首页>eLife:细胞重编程和细胞癌变的关键开关

eLife:细胞重编程和细胞癌变的关键开关

从血红细胞到神经细胞,动物体内含有许多类型的特化细胞,这些细胞都起源于干细胞,干细胞具有分化和制造更多干细胞或特化细胞的潜能。

为了分裂,细胞需打开DNA双螺旋使之能被复制。在细胞周期G1期解旋酶被加载到DNA上,解旋酶加载必须达到足够数量才能保障DNA被完整复制。
因此作者格外关注微小染色体维持(Minichromosome maintenance,MCM)蛋白复合体。“细胞分裂时,如果MCM解旋酶复合体加载不完全,子细胞的主要DNA突变和细胞死亡风险就会上升,”文章一作Jacob Matson说,作为一名准博士,过去三年他一直专注于这项研究。

该过程发生于细胞周期G1期,不同类型细胞的G1期维持长短大不相同。以干细胞为例,它们的G1期比其他“分化”细胞(如皮肤细胞或心肌细胞等)短得多。干细胞如何在短时间内,完成MCM完全加载而不引起DNA损伤一直是个谜。

一种可能的猜测是干细胞以某种方式提高了MCM的加载速率。于是,研究人员开发了适用于测量MCM加载时间的检测手段,证实干细胞确实比成熟和分化细胞拥有更快的MCM加载速率,原因是使干细胞分化为成熟细胞的化学促力显著拖慢了成熟细胞的MCM加载速率。

“我们发现,减慢干细胞MCM加载,能使它们更快成熟,”Matson说。结果证明,MCM的加载速率是细胞发育的一个重要变量,相反,快速的MCM加载使干细胞有能力长时间保持在未成熟状态。

“我们怀疑,过快的MCM加载速率也是肿瘤细胞快速生长而不会导致DNA损害的潜在原因,”Matson的导师北卡罗来纳大学生化和生物物理教授Jean Cook说。

结果还暗示,让成熟细胞MCM加载速度变快,也许能把它们变回干细胞。

让普通体细胞回到干细胞状态,即细胞重编程(reprogramming)或诱导多能干细胞(induced pluripotent stem cells)被全球视为干细胞疗法的希望。但目前来看,标准重编程操作并不如研究人员所期望的那样有效。

“我们预想,提高MCM加载速度可以使重编程过程更加有效,”Cook说。

Cook和她的同事们目前正在进一步探讨细胞用于控制MCM加载速率的生物学机制。

他们还怀疑,某些癌细胞在分裂过程中极易产生DNA错误,这种基因组不稳定性可能也与细胞试图提高MCM加载速度失败有关。

“这些研究将有助于解释细胞快速分裂的根本机理,引领干细胞疗法或癌症疗法发展,”Cook博士说道。

原文检索:
Rapid DNA replication origin licensing protects stem cell pluripotency

咨询平台 我要吐槽 返回顶部