User Guide # Amicon® Ultra-0.5 Centrifugal Filter Devices for volumes up to 500 μL For research use only; not for use in diagnostic procedures #### Introduction Amicon® Ultra-0.5 centrifugal filter devices provide fast ultrafiltration, with the capability for high concentration factors and easy concentrate recovery from dilute and complex sample matrices. The vertical design and available membrane surface area provide fast sample processing, high sample recovery (typically greater than 90% of dilute starting solution), and the capability for 30-fold concentration. Typical processing time is 10 to 30 minutes depending on Nominal Molecular Weight Limit (NMWL). Solute polarization and subsequent fouling of the membrane are minimized by the vertical design, and a physical deadstop in the filter device prevents spinning to dryness and potential sample loss. Efficient recovery of the concentrated sample (retained species) is achieved by a convenient reverse spin step after collecting the filtrate. Amicon® Ultra-0.5 devices are supplied non-sterile and are for single use only. The Amicon® Ultra-0.5 product line includes 5 different cutoffs (Nominal Molecular Weight Limit, NMWL). These devices are for research use only and not for use in diagnostic procedures. - Amicon® Ultra 3K device 3,000 NMWL - Amicon® Ultra 10K device 10,000 NMWL - Amicon® Ultra 30K device 30,000 NMWL - Amicon® Ultra 50K device 50,000 NMWL - Amicon® Ultra 100K device 100,000 NMWL ### **Applications** - Concentration of biological samples containing antigens, antibodies, enzymes, nucleic acids (DNA/RNA samples, either single- or double-stranded), microorganisms, column eluates, and purified samples - Purification of macromolecular components found in tissue culture extracts and cell lysates, removal of primer, linkers, or molecular labels from a reaction mix, and protein removal prior to HPLC - Desalting, buffer exchange, or diafiltration ### **Materials Supplied** The Amicon® Ultra-0.5 device is supplied with two microcentrifuge tubes. During operation, one tube is used to collect filtrate; the other to recover the concentrated sample. # **Required Equipment** Centrifuge with fixed angle rotor that can accommodate 1.5 mL microcentrifuge tubes **CAUTION:** To avoid damage to the device during centrifugation, check clearance before spinning. #### Suitability Preliminary recovery and retention studies are suggested to ensure suitability for intended use. See the "How to Quantify Recoveries" section. ### **Device Storage** Store at room temperature. ### **Prerinsing** The ultrafiltration membranes in Amicon® Ultra-0.5 devices contain trace amounts of glycerine. If this material interferes with analysis, pre-rinse the device with buffer or Milli-Q® water. If interference continues, rinse with 0.1 N NaOH followed by a second spin of buffer or Milli-Q® water. CAUTION: Do not allow the membrane in Amicon® Ultra filter devices to dry out once wet. If you are not using the device immediately after pre-rinsing, leave fluid on the membrane until the device is used ## How to Use Amicon® Ultra-0.5 Centrifugal Filter Devices - Insert the Amicon® Ultra-0.5 device into one of the provided microcentrifuge tubes. - 2. Add up to 500 μL of sample to the Amicon® Ultra filter device and cap it. - Place capped filter device into the centrifuge rotor, aligning the cap strap toward the center of the rotor; counterbalance with a similar device. - 4. Spin the device at 14,000 x g for approximately 10–30 minutes depending on the NMWL of the device used. Refer to Figure 1 and Table 2 for typical spin times. - Remove the assembled device from the centrifuge and separate the Amicon® Ultra filter device from the microcentrifuge tube. - 6. To recover the concentrated solute, place the Amicon® Ultra filter device upside down in a clean microcentrifuge tube. Place in centrifuge, aligning open cap towards the center of the rotor; counterbalance with a similar device. Spin for 2 minutes at 1,000 × g to transfer the concentrated sample from the device to the tube. The ultrafiltrate can be stored in the centrifuge tube. NOTE: For optimal recovery, perform the reverse spin immediately. #### **Desalting or Diafiltration** Desalting, buffer exchange, or diafiltration are important methods for removing salts or solvents in solutions containing biomolecules. The removal of salts or the exchange of buffers can be accomplished in the Amicon® Ultra-0.5 device by concentrating the sample, discarding the filtrate, then reconstituting the concentrate to the original sample volume with any desired solvent. The process of "washing out" can be repeated until the concentration of the contaminating microsolute has been sufficiently reduced. See example below. #### **Performance - DNA Concentration** The Amicon® Ultra-0.5 30K device provides the best balance between recovery and spin time for double-stranded DNA for base pairs ranging from 137 to 1159. To achieve maximum PCR product recovery and primer removal with primers greater than 20 bases, one or two additional spins with Tris-EDTA (TE) buffer are recommended. Table 1. Typical recovery of nucleotides from Amicon® Ultra-0.5 devices | PCR Product (base pairs) | PCR Primer
(bases) | PCR Recovery (%) | PCR Primer
Removal (%) | TE Washes
(number) | |--------------------------|-----------------------|------------------|---------------------------|-----------------------| | 137 | 10 | ≥ 95 | ≥ 90 | 0 | | | 20 | ≥ 90 | ≥ 85 | 1 | | | 48 | ≥ 90 | ≥ 75 | 2 | | 301 | 10 | ≥ 90 | ≥ 90 | 0 | | | 20 | ≥ 85 | ≥ 90 | 1 | | | 48 | ≥ 90 | ≥ 80 | 2 | | 657 | 10 | ≥ 95 | ≥ 90 | 0 | | | 20 | ≥ 90 | ≥ 90 | 1 | | | 48 | ≥ 95 | ≥ 90 | 2 | | 1159 | 10 | ≥ 90 | ≥ 90 | 0 | | | 20 | ≥ 90 | ≥ 95 | 1 | | | 48 | ≥ 95 | ≥ 95 | 2 | #### Performance - Protein Concentration #### Flow Rate Factors affecting flow rate include sample concentration, starting volume, chemical nature of solute, relative centrifugal force, centrifuge rotor angle, membrane type, and temperature. Figure 1 and Table 2 can be used to estimate the time required to achieve a given volume of filtrate or concentrate for a variety of protein markers. A typical spin time for a 500 μ L sample is approximately 10 to 30 minutes (depending on device nominal molecular weight limit). While most of the sample is filtered in the first 5 to 10 minutes of centrifugation, the lowest concentrate volume (15–20 μ L) is reached after spinning for 10 to 30 minutes. Figure 1. Typical Filtrate Volume vs. Spin Time Spin conditions: 40° fixed angle rotor, $14,000\times g$, room temperature, $500~\mu L$ starting volume. Protein markers used: Cytochrome c for 3K and 10K, BSA for 30K and 50K, and IgG for 100K, n=8. Table 2. Typical Concentrate Volume / Concentration Factor vs. Spin Time | | 3K de | evice | 10K d | evice | 30K d | evice | 50K d | evice | 100K d | levice | |--------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------| | Spin Time
(min) | Conc.
Volume
(µL) | Conc.
Factor
(x) | | 5 | 215 | 2 | 74 | 7 | 42 | 12 | 28 | 18 | 58 | 9 | | 10 | 114 | 4 | 42 | 12 | 23 | 22 | 20 | 25 | 19 | 26 | | 15 | 80 | 6 | 27 | 18 | 19 | 27 | 17 | 30 | 15 | 33 | | 20 | 62 | 8 | 20 | 25 | 17 | 30 | 15 | 33 | 13 | 36 | | 30 | 48 | 10 | 17 | 30 | 15 | 32 | 15 | 36 | 11 | 41 | Spin conditions: 40° fixed angle rotor, $14,000 \times g$, room temperature, $500 \mu L$ starting volume. Protein markers used: Cytochrome c for 3K and 10K, BSA for 30K and 50K, and IgG for 100K, n=12. Shaded volumes were used for the calculation of protein recovery in Table 4. ### **Protein Retention and Concentrate Recovery** The membranes used in Amicon® Ultra devices are characterized by a nominal molecular weight limit (NMWL); that is, their ability to retain molecules above a specified molecular weight. Solutes with molecular weights close to the NMWL may be only partially retained. Membrane retention depends on the solute's molecular size and shape. For most applications, molecular weight is a convenient parameter to use in assessing retention characteristics. Merck Millipore Ltd. (Millipore) recommends using a membrane with a NMWL at least two times smaller than the molecular weight of the protein solute that one intends to concentrate. Refer to the table below. Table 3. Typical Retention of Protein Markers | Marker/Concentration | Molecular
Weight | Device
NMWL | % Retention | Spin Time
(min) | |------------------------------|---------------------|----------------|-------------|--------------------| | α-Chymotrypsinogen (1 mg/mL) | 25,000 | 3K | >95 | 30 | | Cytochrome c (0.25 mg/mL) | 12,400 | | >95 | 30 | | Vitamin B-12 (0.2 mg/mL) | 1,350 | | < 42 | 30 | | α-Chymotrypsinogen (1 mg/mL) | 25,000 | 10K | >95 | 15 | | Cytochrome c (0.25 mg/mL) | 12,400 | | >95 | 15 | | Vitamin B-12 (0.2 mg/mL) | 1,350 | | <23 | 15 | | BSA (1 mg/mL) | 67,000 | 30K | >95 | 10 | | Ovalbumin (1 mg/mL) | 45,000 | | >95 | 10 | | Cytochrome c (0.25 mg/mL) | 12,400 | | <35 | 10 | | BSA (1 mg/mL) | 67,000 | 50K | >95 | 10 | | Ovalbumin (1 mg/mL) | 45,000 | | ~ 40 | 10 | | Cytochrome c (0.25 mg/mL) | 12,400 | | < 20 | 10 | | Thyroglobulin (0.5 mg/mL) | 677,000 | 100K | >95 | 10 | | lgG (1 mg/mL) | 156,000 | | >95 | 10 | | Ovalbumin (1 mg/mL) | 45,000 | | <30 | 10 | Spin Conditions: 40° fixed angle rotor, 14,000 \times g, room temperature, 500 μL starting volume, n=12. #### Protein Retention and Concentrate Recovery, continued Factors that determine sample recovery include the nature of the protein solute relative to the device NMWL chosen, starting concentration, and concentration factor. Table 4 provides typical recoveries for Amicon® Ultra-0.5 devices. Table 4. Typical Concentrate Recovery | Marker/
Concentration | Molecular
Weight | Device
NMWL | Spin Time
(min) | Concentrate
Volume (µL) | Concentration
Factor (x) | Concentrate
Recovery (%) | |------------------------------|---------------------|----------------|--------------------|----------------------------|-----------------------------|-----------------------------| | Cytochrome c
(0.25 mg/mL) | 12,400 | 3K | 30 | 48 | 10 | 98 | | Cytochrome c
(0.25 mg/mL) | 12,400 | 10K | 15 | 27 | 18 | 95 | | BSA (1 mg/mL) | 67,000 | 30K | 10 | 23 | 22 | 97 | | BSA (1 mg/mL) | 67,000 | 50K | 10 | 20 | 25 | 92 | | IgG (1 mg/mL) | 156,000 | 100K | 10 | 19 | 26 | 92 | Spin Conditions: 40° fixed angle rotor, 14,000 \times g, room temperature, 500 μ L starting volume, n=12. The shaded volumes were taken from Table 2. ### **Maximizing Sample Recovery** Low sample recovery in the concentrate may be due to adsorptive losses, over-concentration, or passage of sample through the membrane. - Adsorptive losses depend upon solute concentration, its hydrophobic nature, temperature and time of contact with filter device surfaces, sample composition, and pH. To minimize losses, remove concentrated samples immediately after centrifugal spin. - If starting sample concentration is high, monitor the centrifugation process in order to avoid overconcentration of the sample. Over-concentration can lead to precipitation and potential sample loss. - If the sample appears to be passing through the membrane, choose a lower NMWL Amicon® Ultra-0.5 device. ### How to Quantify Recoveries Calculate total recovery, percent concentrate recovery, and percent filtrate recovery using the method below. The procedure provides a close approximation of recoveries for solutions having concentrations up to roughly 20 mg/mL. NOTE: Appropriate assay techniques include absorption spectrophotometry, radioimmunoassay, refractive index, and conductivity. #### **Direct Weighing Procedure** The density of most dilute proteins is nearly equal to the density of water (i.e., 1 g/mL). Using this property, the concentrate and filtrate volumes can be quantified by weighing them and converting the units from grams to milliliters. This technique is valid only for solutions with concentrations of approximately $20 \ mg/mL$ or less. - Separately weigh the empty filter device, filtrate collection tube, and concentrate collection tube before use. - 2. Fill filter device with solution and reweigh. - 3. Assemble device in filtrate collection tube and centrifuge per instructions. - 4. Collect the concentrate by reverse spin into the pre-weighed concentrate collection tube. - Remove the device from the concentrate collection tube and weigh the filtrate and concentrate collection tubes. - Subtract weight of empty device/tubes to calculate weights of starting material, filtrate, and concentrate. - 7. Assay the starting material, filtrate, and concentrate to determine solute concentration. - 8. Calculate recoveries using the weight/volume data and the measured concentrations as follows: % concentrate recovery = 100 $$\times \frac{W_c \times C_c}{W_o \times C_o}$$ % filtrate recovery = 100 $$\times \frac{W_f \times C_f}{W_o \times C_o}$$ % total recovery = % concentrate recovery + % filtrate recovery W_c = total weight of concentrate before assay W_o = weight of original starting material $W_f = weight of filtrate$ C_c = concentrate concentration $C_o =$ original starting material concentration C_f = filtrate concentration ### **Specifications** $\begin{tabular}{lll} Maximum initial sample volume & 500 μL \\ \hline Typical final concentrate volume & 15-20 μL \\ \end{tabular}$ Recommended relative centrifugal force $14,000 \times g$ for concentration spin 1,000 × g for reverse spin $\begin{tabular}{lll} \mbox{Maximum relative centrifugal force} & 15,000 \times g \\ \mbox{Active membrane area} & 1~\mbox{cm}^2 \\ \mbox{Hold-up volume} & <5~\mbox{μL} \\ \end{tabular}$ Dimensions Filter device and tube Length (concentration mode; device in tube): 49.9 mm (1.96 in.) Length (reverse spin; device upside down in tube): 47.4 mm (1.87 in.) Tube (cap closed) Diameter: 10.8 mm (0.43 in.) Length: 42.1 mm (1.66 in.) Filter device Diameter: 9.4 mm (0.37 in.) Length: 29.5 mm (1.16 in.) Materials of Construction Filter device Copolymer styrene/butadiene Membrane Ultracel® low binding regenerated cellulose Collection tubes Polypropylene ### **Chemical Compatibility** Amicon® Ultra centrifugal devices are intended for use with biological fluids and aqueous solutions. Before use, check the sample for chemical compatibility with the device. Table 5. Chemical Compatibility of Amicon® Ultra Filter Devices | Acids | Concentration | | Concentration | |-------------------|---------------|----------------------------|---------------| | Acetic acid | ≤ 50%* | Phosphoric acid | ≤30% | | Formic acid | ≤ 5%* | Sulfamic acid | ≤ 3% | | Hydrochloric acid | ≤ 1.0 M | Sulfuric acid | ≤ 3% | | Lactic acid | ≤50% | Trichloroacetic acid (TCA) | ≤10%* | | Nitric acid | ≤ 10% | Trifluoroacetic acid (TFA) | ≤30%* | #### Alkalis | Ammonium hydroxide | /droxide ≤ 10% Sodium hydroxide | | ≤0.5 M | |--------------------|---------------------------------|-------------|--------| | Alcohols | | | | | n-Butanol | ≤ 70% | Isopropanol | ≤ 70% | | Ethanol | ≤ 70% | Methanol | ≤ 60% | Detergents | Alconox® detergent | ≤ 1% | ≤ 1% Lubrol® PX detergent | | |------------------------------|--------|---------------------------|--------| | CHAPS detergent | ≤ 0.1% | Nonidet™ P-40 surfactant | ≤ 2% | | Sodium deoxycholate | ≤ 5% | Triton® X-100 surfactant | ≤ 0.1% | | Sodium dodecyl sulfate (SDS) | ≤ 0.1% | Tween® 20 surfactant | ≤ 0.1% | | Tergazyme® detergent | ≤ 1% | | | Organic solvents | Organic solvenes | | | | |---------------------------|-----------------|-----------------|-----------------| | Acetone | not recommended | Ethyl acetate | not recommended | | Acetonitrile | ≤20% | Formaldehyde | ≤ 5% | | Benzene | not recommended | Pyridine | not recommended | | Carbon tetrachloride | not recommended | Tetrahydrofuran | not recommended | | Chloroform | not recommended | Toluene | not recommended | | Dimethyl sulfoxide (DMSO) | ≤ 5%* | | | #### Miscellaneous | MISCEITATICOUS | | | | |-----------------------|-----------|---------------------------|-------| | Ammonium sulfate | Saturated | Phenol | ≤ 1% | | Diethyl pyrocarbonate | ≤ 0.2% | Phosphate buffer (pH 8.2) | ≤1 M | | Dithiothreitol (DTT) | ≤0.1 M | Polyethylene glycol | ≤ 10% | | Glycerine | ≤ 70% | Sodium carbonate | ≤ 20% | | Guanidine HCI | ≤6 M | Tris buffer (pH 8.2) | ≤1 M | | Imidazole | ≤ 100 mM | Urea | ≤8 M | | Mercaptoethanol | ≤0.1 M | | | ^{*} Contact with this chemical may cause materials to leach out of the component parts. Solvent blanks are recommended to determine whether leachables represent potential assay interferences. ### **Centrifugal Product Ordering Information** #### Amicon® Ultra Devices | Initial
volume
(mL) | Final concentrate volume (µL) | Product | Qty/
pk | 3K | 10K | 30K | 50K | 100K | |---------------------------|------------------------------------|--|----------------------|--|--|--|--|--| | 0.5 | 15–20 | Amicon®
Ultra-0.5
device | 8
24
96
500 | UFC500308
UFC500324
UFC500396
UFC5003BK | UFC501008
UFC501024
UFC501096
UFC5010BK | UFC503008
UFC503024
UFC503096
UFC5030BK | UFC505008
UFC505024
UFC505096
UFC5050BK | UFC510008
UFC510024
UFC510096
UFC5100BK | | Amicon® | Amicon® Ultra-0.5 Collection Tubes | | 96 | UFC50VL96 | | | | | | 2 | 15–70 | Amicon®
Ultra-2
pre-launch
device | 24 | UFC200324PL | UFC201024PL | UFC203024PL | UFC205024PL | UFC210024PL | | 4 | 50-100 | Amicon®
Ultra-4
device | 8
24
96 | UFC800308
UFC800324
UFC800396 | UFC801008*
UFC801024*
UFC801096* | UFC803008
UFC803024
UFC803096 | UFC805008
UFC805024
UFC805096 | UFC810008
UFC810024
UFC810096 | | 15 | 150-300 | Amicon®
Ultra-15
device | 8
24
96 | UFC900308
UFC900324
UFC900396 | UFC901008*
UFC901024*
UFC901096* | UFC903008
UFC903024
UFC903096 | UFC905008
UFC905024
UFC905096 | UFC910008
UFC910024
UFC910096 | ^{*} Amicon® Ultra-4 and -15 10K devices are for in vitro diagnostic use. All other devices are for research use only. ### **Technical Assistance** For more information, contact the office nearest you. In the U.S., call 1-800-MILLIPORE (1-800-645-5476). Outside the U.S., go to our web site at www.millipore.com/offices for up-to-date worldwide contact information. You can also visit the tech service page on our web site at www.millipore.com/techservice. ### **Standard Warranty** The applicable warranty for the products listed in this publication may be found at www.millipore.com/terms (within the "Terms and Conditions of Sale" applicable to your purchase transaction). ### Notice The information in this document is subject to change without notice and should not be construed as a commitment by Merck Millipore Ltd. or an affiliate. Neither Merck Millipore Ltd. nor any of its affiliates assumes responsibility for any errors that may appear in this document. Made in Ireland The M logo is a trademark of Merck KGaA, Darmstadt, Germany. Millipore, Amicon, Milli-Q, and Ultracel are registered trademarks of Millipore Corporation. Alconox and Tergazyme are registered trademarks of Alconox, Inc. Lubrol is a registered trademark of Imperial Chemical Industries PLC. Nonidet is a trademark of Royal Dutch/Shell Group. Triton is a registered trademark of Union Carbide Corp. Tween is a registered trademark of ICI Americas, Inc. © 2011 Millipore Corporation. All rights reserved. PR03711, Rev. A, 11/11